
BT Technology Journal • Vol 22 No 4 • October 2004 1

Affective learning — a manifesto

R W Picard, S Papert, W Bender, B Blumberg, C Breazeal, D Cavallo, 
T Machover, M Resnick, D Roy and C Strohecker

The use of the computer as a model, metaphor, and modelling tool has tended to privilege the ‘cognitive’ over the ‘affective’ by 
engendering theories in which thinking and learning are viewed as information processing and affect is ignored or marginalised. In the 
last decade there has been an accelerated flow of findings in multiple disciplines supporting a view of affect as complexly intertwined with 
cognition in guiding rational behaviour, memory retrieval, decision-making, creativity, and more.  It is time to redress the imbalance by 
developing theories and technologies in which affect and cognition are appropriately integrated with one another.  This paper describes 
work in that direction at the MIT Media Lab and projects a large perspective of new research in which computer technology is used to 
redress the imbalance that was caused (or, at least, accentuated) by the computer itself. 

1. Vision
The last half-century of technological acceleration has yielded 
a massive incursion of digital technology into the learning 
environment, making dramatic differences, and promising 
even greater changes, to the practice of learning. Computers 
have served as tools to aid in learning at all levels from simple 
classroom activities to the way theorists think about thinking. 
The field of artificial intelligence, with emphasis on ideas such 
as knowledge representation, modelling of logical processes, 
and other kinds of important cognitive activities, has 
prompted thinking about parallel concepts in human learning, 
and facilitated the development of theories where thinking 
and learning are viewed as information processing. Both 
human and machine learning research have benefited from 
this exchange of ideas between psychology and computation.

However, these benefits have been bought at the price of a 
bias towards the cognitive and relative neglect of the affective.  
Of course nobody denies the role of affect in learning.  
Certainly teachers know that it plays a crucial role, recognising 
it under intuitively understood headings like motivation, 
emotion, interest, and attention.  Even leading theorists of the 
cognitive scientific revolution [1, 2] have called for greater 
representation of affect. However, the extension of cognitive 
theory to explain and exploit the role of affect in learning is at 
best in its infancy.  

Developments in the past decade have both accentuated the 
gap in theoretical understanding between these two sides of 
mental functioning and offered glimpses of insights into how 
to close it. On the most fundamental level, an accelerated flow 
of findings in neuroscience, psychology, and cognitive science 

itself present affect as complexly intertwined with thinking, 
and performing important functions with respect to guiding 
rational behaviour, memory retrieval, decision-making, 
creativity, and more. While it has always been understood that 
too much emotion is bad for rational thinking, recent findings 
suggest that so too is too little emotion — when basic 
mechanisms of emotion are missing in the brain, then 
intelligent functioning is hindered. These findings point to new 
advances in understanding the human brain not as a purely 
cognitive information processing system, but as a system in 
which affective functions and cognitive ones are inextricably 
integrated with one another

At the same time there have been developments on the more 
applied level of thinking about learning, particularly in K−12 
education. The first fall-out from the computer presence were 
strongly on the ‘cognitive’ side of the split. Even when 
depersonalised drill and practice in basic skills gave way to the 
idea of ‘intelligent tutors’, the theoretical emphasis was on 
diagnosing and correcting errors in reasoning or factual 
knowledge. However, the past two decades have seen a 
powerful growth of educational thinking that emphasise the 
importance of the relationship of the learner to the process 
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and the content of learning. This movement has supported 
and been supported by a growing tendency to view the 
computer as a ‘motivational’ and even a ‘psychological’ 
presence rather than a logical analytic engine.   There is a 
need for theories that deal with the interplay of these aspects 
of learning and a body of experience to support the 
development of such theories.

This paper is driven by a vision of advancing towards a unified 
theory that will bridge these gaps. Among the authors of this 
article there are strong differences about what such a theory 
might look like.  Stronger than these differences, however, is 
our shared goal of redressing the imbalance between affect 
and cognition, and between theory and practice, to bring 
balance to the science of learning and to its technologies.  The 
greatest advancements in the science of learning will require 
the engagement of multiple perspectives.  This paper is a first 
step, bringing together diverse viewpoints and areas of 
expertise from a growing community, to begin to construct a 
science of affective learning.

 This overview paper is organised into three broad areas: 

• building tools and technologies that elicit, sense, 
communicate, measure, and respond appropriately to 
affective factors,

• building new models and learning systems that 
incorporate affect, as a foundation for both new 
approaches to education and more effective machine 
learning,

• developing affectively evocative materials, things-to-
learn, and learning environments. 

Interwoven closely with these technology construction efforts 
is a growing research effort to develop and refine theories and 
terminology related to affect in learning.

2. Challenges in affective learning
Scientific findings over the past decade have started to lay the 
foundation for a better understanding of the role of affect in 
learning. Research has demonstrated, for example, that a 
slight positive mood does not just make you feel a little better 
but also induces a different kind of thinking, characterised by a 
tendency toward greater creativity and flexibility in problem 
solving, as well as more efficiency and thoroughness in 
decision making. These effects have been found among many 
groups of different ages and professions [3]. The influences on 
cognition are not limited to positive mood — affective states 
such as fear, anger, sadness, and joy show up in the brain as 
different patterns of blood flow, providing one possible 
explanation for how affect influences brain activity (e.g. Lane 
et al [4] and Damasio et al [5]). In the case of positive affect, a 
theory of two separate but interacting dopamine systems has 
been proposed for mediating some of the effects positive 
affect has on cognition [6]. There is also some indication that 
positive affect increases intrinsic motivation [7]. 

Although the work in this area is only beginning to be 
launched, it already suggests that a positive mood is not best 
for all kinds of thinking, but that certain affective states 
facilitate some kinds of thinking better than others. Learning 

research has long recognised the importance of facilitating 
different ways of thinking — with beliefs such as ‘you don’t 
understand something unless you understand it in many 
ways’. In his forthcoming book, The Emotion Machine, Marvin 
Minsky argues, ‘... when we change what we call our 
‘emotional states’, we’re switching between different ways to 
think’ [8].

Among educators and educational researchers, there is a 
growing recognition that interest and active participation are 
important factors in the learning process (e.g. Bransford et al 
[9]). But acceptance of these ideas is based largely on intuition 
and generalised references to constructivist theorists [10—
12]. There is need for new types of studies on the role of affect 
in learning. We believe that new technologies can play a 
particularly important role in these efforts, helping us to 
measure, model, study, and support the affective dimension 
of learning in ways that were not previously possible. 

3. Terminology and theories
One of the problems with studying affect is defining what it is 
— illuminating a better definition of affect and related terms 
like emotion, motivation, caring, and so forth. Modern 
research in this area began before the turn of the last century, 
when Charles Darwin [13] and William James [14] devoted 
seminal works to describing emotion, anchoring its description 
in measurable bodily changes and expressions. In the last 
century many cognitive scientists and psychologists have 
advanced theories and definitions of emotion, motivation, and 
other affective phenomena. Nearly a hundred definitions of 
emotion had been categorised as of 1981 [15] when Don 
Norman wrote his now classic essay naming emotion as one of 
the twelve major challenges for cognitive science [2].

Today, the burgeoning literature on affect includes diverse 
communities such as psychology, cognitive science, 
neuroscience, engineering, computer science, sociology, 
philosophy, and medicine, and this has contributed to a 
similarly diverse understanding of numerous basic terms 
related to affect — such as ‘emotion’, ‘motivation’, 
‘attention’, ‘reward’, and more. One of the challenges we face 
is the bringing together of theorists and practitioners from 
different fields in order to refine the language used with 
respect to affect and learning. 

Although there are dozens of books on various affective 
phenomena, there is a lack of theory that engages the topic of 
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affect in learning. Some of the classic works on affect 
emphasise cognitive and information processing aspects in a 
way that can be encoded into machine-based rules, and 
studied in a learning interaction. The most widely adopted of 
these is the OCC model of emotion [16]; however, this model 
does not include many of the affective phenomena observed in 
natural learning situations, such as interest, boredom, or 
surprise. Csikszentmihályi [17] has emphasised the tendency 
for a pleasurable state of ‘flow’ to accompany problem solving 
that is neither too easy nor too challenging, and there have 
been other scattered attempts to address emotions involved in 
learning (e.g. Lepper and Chabay [18], Mandler [19] and 
Kort et al [20, 21]). However, there is still very little 
understanding as to which emotions are most important in 
learning, and how they influence learning. To date there is no 
comprehensive, empirically validated, theory of emotion that 
addresses learning. 

With respect to motivation in learning, there has been much 
more work and much more progress, illuminating the role of 
intrinsic versus extrinsic influences, the influence of how 
pleasurable past learning experiences have been, the feeling 
of contributing to something that matters and the importance 
of having an audience that cares, among other factors [22—
28]. Related concepts such as self-efficacy also play a critical 
role [29—33], and students’ beliefs about their efficacy, in 
turn, influence them emotionally [29, 30]. Several researchers 
have integrated both affective and cognitive components of 
goal directed behaviour into motivation theories (e.g. Maehr 
[34], Dweck [35], Ames and Archer [36], Dweck and Leggett 
[37], and Elliott and Dweck [38]. These and many other efforts 
have provided vast insight into human affect; however, in very 
few cases are the theories at a level suitable for implemen-
tation in an interactive machine model.

The need for more precise theory is being driven today by 
growing efforts to build technologies that interact with 
learners — motivating, engaging, and assisting them in 
challenging new ways. In many of these efforts, the systems 
need programmed representations and strategies that will 
perform in real-time interaction with a human learner. The 
designers of these systems turn to human-human interaction, 
and its literature, as an example to guide their design. Thus, 
the intelligent tutoring system research community examines 
successful human tutoring as a source of inspiration for what 
might be implemented in machine tutoring systems, and 
finds, for example, that ‘expert human tutors... devote at least 
as much time and attention to the achievement of affective 
and emotional goals in tutoring, as they do to the 
achievement of the sorts of cognitive and informational goal 
that dominate and characterise traditional computer-based 
tutors’ [18]. But what do these expert teachers ‘see’ and how 
do they decide upon a course of action? The theories, where 
they do exist, tend to focus on a high-level set of observations 
and practice, which does not directly translate into the level of 
detail needed to implement these phenomena into machines. 

Theories of affect in learning need to be tested and evolved. 
Our approach is to extend classical armchair observations and 
thought experiments with the development and use of new 
technologies that help elicit, sense, measure, communicate, 
understand, reflect upon, and respond to emotions in learning 

situations. Conducting controlled experiments dealing with 
affect has always been a challenge, and new technologies are 
needed to make this process easier. The sections below 
outline several directions with respect to creating such 
technologies. The technology development both derives from 
and contributes to that of the theory; indeed, we hope, by 
engaging in both simultaneously, that one will strengthen the 
other, bringing both closer to clarity and unity. 

4. Enabling technologies that sense and 
respond

One of the reasons understanding about affect has lagged 
behind that of cognition is that affective state information is 
hard to measure. You can easily measure someone’s ability to 
recall a list of learned items, and with somewhat more 
difficulty, you can test their ability to generalise and apply 
some learned information. However, it is much harder to 
measure how they feel while doing these things. How can 
various tools of learning, and future robots and environments, 
objectively sense if a learner is pleased, engaged, disengaged, 
frustrated or ready to quit? And in what ways can these tools 
enable reflection and discovery about affect? There is a need 
to develop sensors and interfaces, together with new signal 
processing, pattern recognition, and reasoning algorithms for 
assessing and responding to the affect of the learner in real 
time. 

4.1 Sensing without interfering
Affective experience — such as how much pleasure, 
frustration, or interest you felt — is typically measured by 
questionnaire (e.g. Matsubara and Nagamashi [39], de 
Vicente and Pain [40], and Whitelock and Scanlon [41]). 
Special instruments have been developed in many cases, such 
as for evaluating the motivational characteristics of an 
instructor’s classroom delivery (e.g. Keller and Keller [42]). 
Despite the convenience and widespread acceptance of 
questionnaires, the use of self-report information is 
considered unreliable when it comes to emotion — for adults, 
self-report is coloured by awareness of internal state, 
reflections on how such a report will be perceived, ability to 
articulate what one feels, and more. For children, emotion 
self-report ‘is never highly valid, and any report before age 11 
is unwise’ [43]. On top of these problems, questionnaires 
require interrupting  the learning experience, and thus cannot 
be used unobtrusively and continuously during learning.  
Alternatives, such as use of external human observers to label 
affect, are labour and time-intensive, and do not scale to 
important visions such as that of the Computing Research 
Association (CRA) to provide ‘A (Computer) Teacher for Every 
Learner’ [44].  If a machine is to observe a learner 
continuously, as a skilled mentor or tutor, then it will need 
skills of affect perception. 

With skills of affect perception a computer that detects the 
learner making a mistake while appearing curious and 
engaged could leave the learner alone since mistakes can be 
important for facilitating learning and exploration; however, if 
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the learner is frowning, fidgeting, and looking around while 
making the same mistake, then the computer might use this 
affective feedback to encourage a different strategy. 

A number of researchers have raised the concern that you 
cannot begin to measure or respond to affect until after you 
articulate a clear theory of affect. While theory and clearer 
terminology are important goals we share, there are examples 
from natural systems that suggest we can still forge ahead, 
despite the state of the theory. For example, dogs presumably 
have no theory of what affect is and yet they appear to sense 
and respond to their owner’s moods, responses that in many 
cases bring about beneficial consequences. One can make a 
related argument for infants, who show an ability to respond 
to how something is said, long before they understand what is 
said [45]. Thus, we believe that even without a fully-fledged 
theory of affect, machines can be given some capabilities to 
recognise and respond to affect. In fact, it is our experience 
that efforts to build a phenomenon that is poorly understood 
will aid in helping improve the understanding of that very 
phenomenon, so that engaging simultaneously in both the 
practice and the theory helps advance both.

Emotion recognition is a component of emotional intelligence 
[46, 47], and skilled humans can assess emotional signals, in 
themselves and in others, with varying degrees of accuracy. 
Recent developments in affective computing aim to also give 
computers skills of emotional intelligence, including the ability 
to recognise emotion as well as a person might [48]. The basic 
approach is to observe a person’s patterns of behaviour via 
sensors such as cameras, microphones, or pressure sensors 
applied to objects the learner is in contact with (mouse, chair, 
keyboard, steering wheel, toy), and use computers to 
associate these patterns with probable affective state 
information. Thus, a camera and computer, equipped with 
pattern recognition software, might be used to recognise 
facial muscle movements associated with a smile, and the 
smile-detection might then be used to help reason about the 
probability the person is actually happy. (Expressions do not 
always imply the existence of underlying feelings.) The job of 
the computer is to assess a constellation of such patterns and 
relate them to the user’s affective state. The latter is what is 
termed ‘emotion recognition’ even though it does not really 
see what you are feeling, but only a pattern of measurable 
external changes associated with feelings. 

Most prior work on emotion expression recognition from 
speech, image, and video has focused on deliberately 
expressed emotions, and not on those that occur in natural 
situations such as classroom learning. The results make it hard 
to predict rates we can expect for recognising emotions during 
learning. In general, people can recognise one of about six 
different emotional states from speech with about 60% 
accuracy [49]. Computer algorithms match this accuracy 

under more restrictive assumptions, such as when the 
sentence content is already known. However, automated 
speech recognition that works at about 90% accuracy on 
neutrally spoken speech tends to drop to 50—60% accuracy 
on emotional speech [50]. Improved handling of emotion in 
speech is important for improving recognition of what was 
said, as well as how it was said. Facial expression recognition is 
easier for people, and the rates computers obtain are higher 
— from 65—98% accuracy on tests to date, with the lower 
numbers on the more ‘natural’ data that did not control for 
head movement. Here, the latest research has focused on 
recognising specific muscle movements known as ‘facial 
actions’ [51] that can be used to construct any facial 
expression [52—59].  Under certain restricted conditions the 
automated recognisers have been shown to perform 
comparably to humans trained in recognising facial actions 
[52]. Combining visual information with other modalities can 
give improved results [60—63].

Although the progress in facial, vocal, and combined facial/
vocal expression recognition is promising, the numerical 
results given above are on pre-segmented data of a small set 
of sometimes exaggerated expressions, or on a small subset of 
hand-marked singly occurring facial actions. The state of the 
art in affect recognition is similar to that of speech recognition 
decades ago when the computer could classify the carefully 
articulated digits, ‘0, 1, 2, ..., 9,’ spoken with pauses in 
between, but could not accurately detect these digits in 
continuous conversations. Moreover, we are interested in 
computer recognition of truly experienced emotions in 
learning situations, as opposed to emotions that have been 
expressed by actors or by subjects posed in front of a camera 
or microphone. Thus we cannot expect the computer to 
perform perfectly at recognition, and our methods will have to 
take into account uncertainty factors. 

Recently, a number of projects have tackled the sensing and 
modelling of emotion in learning and educational gaming 
environments [20, 64—68].  Systems developed in the MIT 
Media Laboratory include ‘expression glasses,’ which 
discriminate upward facial expressions such as those of 
interest and openness from downward expressions such as 
those of confusion or dissatisfaction [69]; these are also 
designed to hide the wearer’s expression from view of the 
teacher, allowing the students to anonymously communicate 
expressions of confusion to the teacher in real time without 
fear of what the teacher might think of the student’s intellect. 
Additionally, the Media Lab has attained from 89—96% 
classification accuracy of three levels of cognitive-emotional 
stress [70], although the latter data was from drivers in Boston 
and not from children in learning situations, where stress 
would also be interesting to study. 

Recently, a system was designed at the Media Lab for 
automated recognition of a child’s interest level in natural 
learning situations (see Fig 1), using a combination of 
information from chair pressure patterns sensed using Tekscan 
pressure arrays (recording how postures moved during 
learning) [71] and from upper facial features sensed using an 
IBM BlueEyes video camera (http://www.almaden.ibm.com/cs/
blueeyes) [64]. New algorithms were developed with the aim 
of seeing if the machine could match a teacher’s ratings of 
affective labels. Training and testing algorithms on separate 
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sequences of data from the learning experiences, we 
developed a system that achieved an accuracy of 76% on 
affect category recognition from chair pressure patterns, and 
88% on nine ‘basic’ postures that were identified as making 
up the affective behaviours. Both sets of results are 
conservative, being trained on a small set of data, and tested 
on children not seen before. The accuracy rates increase to 
82% and 98%, respectively, on children who have had 
portions of their data included as part of the training process. 
All of these results are highly significant, confirming that there 
is strong evidence of affective information in the postural 
moves of the child. These results show that elements of affect 
can be measured with results significantly higher than 
random.  Such methods need further improvement, especially 
to integrate facial, postural, and other behavioural 
information for jointly analysing the state of the learner and 
increasing accuracy of the inference.

Additionally, we see the need to evolve new sensors for 
learning environments where the learner is not seated in front 
of a computer as well as for the traditional keyboard/monitor/
mouse environment. Our efforts include extending the 
Galvactivator (http://www.media.mit.edu/galvactivator), a 
skin-conductivity sensing glove, to communicate wirelessly 
with a nearby hand-held computer. Skin conductivity gives a 
measure of psychological arousal, which is a strong predictor 
for both attention and memory [72]. We have found that 
students enjoyed learning about how this signal changed with 
their level of engagement in various learning activities [73], 
and we believe it will be an enabling tool for exploring affect in 
new learning environments. Additionally, we have been 
exploring uses of a newly developed ‘pressure mouse’ device, 
a mouse augmented with eight pressure pads that indicate 
‘how’ the mouse is being handled. An increase in physical 
pressure applied to a pressure-sensitive mouse has recently 
been shown to be associated with frustration caused by poor 

usability in a computer interface [74].   With collaborators at 
MediaLabEurope, we are also developing new comfortable 
wireless physiological sensors and real-time signal processing 
algorithms, which will be useful for monitoring learner stress.

Finally, in neuroscience itself, there is a pressing need to 
develop ways to measure the levels of interest and motivation 
of an animal engaged in tasks, and to gauge the levels of 
stress experienced by the animal. We have been approached 
by neuroscientists who would like to collaborate in the 
development of new affect sensing technologies for 
fundamental research looking at the mechanisms of 
motivation and attention in the animal brain. This research, 
while very basic, is needed to inform the understanding of 
human brain disorders related to attention and motivation.

4.2 Reflecting and interpreting
The extent to which emotional upsets can interfere with 
mental life is no news to teachers. Students who are anxious, 
angry, or depressed do not learn; people who are caught in 
these states do not take in information efficiently or deal with 
it well [47].

How can systems that measure affective information help 
people make sense of what has been measured, and respond 
in useful, appropriate, and respectful ways? One important 
response is to help people become more aware of their affect 
— building a kind of ‘affective mirror’ in which the learner is 
encouraged to reflect upon how their state is influencing their 
learning experience. Emotional awareness, in oneself and in 
others, is considered to be a learnable skill of emotional 
intelligence. Being aware of one’s state, such as frustration, 
can be instrumental in helping deal with that state 
productively.

The Galvactivator, which converts level of skin conductivity to 
the brightness of a glowing LED, is one device that makes it 
easy to visualise how your psychological arousal changes as 
you go about activities. We observed classrooms of students 
wearing these, where the light glowed brightly when they were 
engaged in discussing ideas or writing in their journals, and 
went dim (for many of them) when they were lectured to. Skin 
conductivity exhibits changes with respect to attention and 
engagement, and reflects interesting patterns when there are 
disorders of these, such as in autistics and in patients with 
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 Fig 1 Various sensors can capture postural, facial, skin-surface, and gestural changes that carry affective information. From left to 
right: chair with Tekscan pressure sensors, BlueEyes camera, Galvactivator skin conductivity sensor, and pressure mouse.
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various emotion-related deficits (e.g. Bechara et al [75], 
Hirstine et al [76]).  There are also many possible additional 
means for people to learn about and reflect upon affective 
signals such as the one shown in Fig 2.

Another project we have initiated is the use of a physically 
animated computer for facilitating awareness of affect in 
learning. This project equips a desktop monitor with the ability 
to move in subtly expressive ways in response to its user. The 
physical animation of the machine is inspired by natural 
human-human interaction — when people work together, 
they move in reciprocal ways, such as shifting posture at 
conversational boundaries and leaning forward when 
interested. The physically animated computer will sense and 
interpret multimodal cues from the user via sensors such as 
those above. It will then respond to the user’s cues with 
carefully crafted subtle mechanical movements and occasional 
auditory feedback, using principles derived from natural 
human-human interaction.

The initial version of this device will be designed to mirror 
affect from the user in a way that is non-distracting. For 
example, if the child’s face and posture show signs of intense 
interest in what is on the screen, the computer would hold very 
still so as to not distract the child. If the child shifts her posture 
and moves in such a way that suggests she is taking a break, 
or starting to become bored, the computer will do similarly. In 
doing so, the system not only acknowledges the presence of 
the child and shows respect for her level of attentiveness, but 
also shows subtle expressions of mirroring that, in human-
human interaction, are believed to help build rapport and 
liking [77]. By increasing likeability, we hope to facilitate task 
outcomes such as how long the child perseveres with the 
learning task. Of course, the system can also use subtle 
movements to reflect other expressions such as frustration or 
disappointment [78]. We are interested in evaluating the 
impact of such communication on the learner’s reflection of 
her own state, as well as on other performance characteristics 
of the learning experience.

We also see value in integrating new affect sensing, 
recognition, and reflection technologies into efforts to build 
intelligent tutoring systems and other automated systems 
where there is potential to adapt the learning experience 
based on signs of interest, frustration, and any other affect-
related cues. We currently have one such collaboration with 
the AutoTutor project at Memphis (http://www.autotutor.org), 
and there are a growing number of opportunities in this area 
related to the CRA vision [44] of a ‘teacher for every learner.’  

By embedding these technologies in learning interactions with 
automated systems (animated tutors, robotic computers, etc) 
and also integrating them into other learning environments 
(see below) we hope to better answer such questions as: What 
affective states are most important to learning and how do 
these states change with various kinds of pedagogy? How 
does knowledge of one’s affective state influence outcomes in 
the learning experience? Additionally, these technologies form 
the basis for building systems that will interact with learners in 
more natural ways, bootstrapping the machine’s own ability to 
learn, the topic of the next section. 

5. Machines that learn with you
Machine learning has focused largely on algorithms that can 
label new data, and not on systems that learn naturally from 
interacting with you.  We wish to shift this focus to enable new 
kinds of systems that learn with people through natural 
interaction.  A key part of this effort will involve the 
development of new theories and models for integrating 
affective and cognitive mechanisms used in learning.  In so 
doing, we hope to realise three equally important goals. 
Firstly, we wish to advance the state of the art in machine 
learning to develop systems that can learn far more quickly, 
more broadly, and continuously from natural human 
instruction and interaction than they could alone. Secondly, 
we aspire to achieve a deeper understanding of human 
learning and development by creating integrated models that 
permit an in-depth investigation into the social, emotional, 
behavioural, and cognitive factors that play an important role 
in human learning. Thirdly, we want to use these models and 
insights to create engaging technologies that help people 
learn better.

The history of combining affective mechanisms with cognitive 
ones for improving machine processing goes back at least to 
the work of Herb Simon [1], who articulated the construction 
of motivational and emotional controls over cognition, and 
proposed incorporating these into information processing 
systems. His work was inspired by Neisser [79], who, in a 
criticism of the dominant information processing theories, 
emphasised these fundamental characteristics of human 
thought: 

• human thinking always takes place in, and contributes to, 
a cumulative process of growth and development,

• human thinking begins in an intimate association with 
emotions and feelings which is never entirely lost,

• almost all human activity, including thinking, serves not 
one but a multiplicity of motives at the same time.  Fig 2 Prototype of physically animated computer.
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Some have claimed that the emotional components may be, in 
some ways, dominant; Don Norman wrote, ‘There must be a 
regulatory system that interacts with the cognitive 
component. And it may well be that it is the cognitive 
component that is subservient, evolved primarily for the 
benefit of the regulatory system, working through the 
emotions, through affect’ [2]. Thus, these pioneering theorists 
suggested that cognition, and by extension learning, took 
place within the context of emotional, motivational, 
perceptual and behavioural structures that shaped those very 
processes. 

By contrast, the dominant trend in machine learning has been 
to eschew built-in structure or a priori knowledge of the 
environment and to discover structure that is in the data or the 
world through extensive search and/or sophisticated statistical 
learning techniques. Pattern recognition and reinforcement 
learning are two problem domains in particular that have 
attracted attention and met with success. In pattern 
recognition, the system’s goal is to learn a mapping from a set 
of input features to an output label. The input features might 
be associated with a gesture, a face, or an acoustic pattern, 
for example, and the output label might be something like 
‘appears to be happy.’ The system typically learns the 
mapping through a statistical analysis of hundreds or 
thousands of training examples chosen by a ‘knowledgeable 
external supervisor’ [80], in which an example contains both 
the input features and the desired output label. Typically, the 
system has no a priori knowledge of the structure of the input 
space and must discover it based on the examples provided by 
the supervisor. In the domain of reinforcement learning, the 
goal of the system is to learn an optimal sequence of actions 
that will move the system from an arbitrary state to a goal 
state. The main approach of reinforcement learning is to 
probabilistically explore states, actions and their outcomes to 
learn how to act in any given situation. 

Reinforcement learning is an example of unsupervised 
learning in that the only supervisory signal is the reward 
received when it achieves the desired goal. However, as with 
supervised learning techniques, the actual learning algorithm 
has no a priori knowledge about the structure of the state and 
action spaces and must discover any structure that exists on 
its own through its exhaustive exploration of these spaces. As 
a result, reinforcement learning typically requires hundreds or 
thousands of examples in order to learn successfully.

Thus, the progress to date in machine learning has come with 
some caveats. Firstly, the most powerful techniques rely on 
the availability of an enormous number of training examples. 
Secondly, they tend not to be appropriate when the 
environment is changing so quickly that earlier examples are 
no longer relevant. Thirdly, the underlying representations 
used in machine learning typically make it difficult for the 

systems to generalise from learning one particular thing or 
strategy to another type of thing. Fourthly, little attention has 
been paid to the question of how a human naturally guides 
and scaffolds the learning process, such as calling attention to 
the part of the task that matters most.  Fifthly, and not 
insignificantly, few would argue that current approaches to 
machine learning, however successful, have much to tell us 
about how learning occurs in animals and humans.

By contrast, any survey of animal learning will quickly convince 
one that learning in nature is characterised by fast and robust, 
albeit, constrained learning [81, 82]. For example, a dog can 
be trained to roll over in response to an arbitrary verbal or 
gestural cue in as little as 20 to 50 repetitions [83]. A 
nightingale can learn to imitate the song of another bird after 
as few as five presentations [84]. A typical child learns an 
average of 8—10 words a day over their first five years [85]. 
How is it that animals and children can solve these learning 
problems so effortlessly? 

Our hypothesis is that the answer lies not in finding the ‘magic 
bullet’ of a unitary learning algorithm or module, but rather in 
discovering the combination of underlying structures and 
processes that radically simplify what would otherwise be a 
complex learning problem. In nature, these internal structures 
are cognitive, behavioural, social, emotional, motivational, 
shallow and deep, innate and learned, purposed and 
repurposed. Indeed, an important way that internal structures 
simplify the learning task is by acting so as to bias the learner 
to take maximal advantage of external environmental and 
social-emotional interactions that serve to structure and 
constrain the learning task. Hence, learning is the result of a 
complex interplay of structures and processes, both internal 
and external to the learner, and having both cognitive and 
affective aspects. 

We are beginning to develop computational models and 
learning systems that capture these key characteristics. We 
believe that such models can provide new insights into 
numerous cognitive-affective mechanisms, and shape the 
design of learning tools and environments, even if they do not 
compare to the marvellous nature of those that make children 
tick. The three co-learning scenarios presented below 
illustrate the kinds of systems we aim to build — each one 
learns in partnership with people, but with different 
emphases. 

5.1 A curious robot
Imagine a robot that exhibits curiosity (Fig 3). Curiosity is a 
trait of natural learning systems (i.e. people and animals) that 
exhibit inquisitiveness and a drive to learn, which tends to be 
followed by quickly learning what they ought to learn, when 
they ought to learn it, in an ongoing way. Inspired by nature, 
we envision a curious robot to be a pro-active learner that 
seeks out experiences and people from which to learn new 
things.

Humans are natural and motivated teachers for entities that 
are rewarding to work with. A curious robot will be able to 
leverage the rich social nature that is uniquely characteristic of 
human learning and instruction to constrain and bias its own 
exploration and discovery of new skills and knowledge, thereby 
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allowing itself to learn more quickly, broadly, and continuously 
than it could alone. To do so, a curious robot will need a 
deeper understanding of the learning process, beyond turning 
the statistical crank of a learning algorithm, to actually reflect 
upon the learning process — when to learn (or when to get 
help to learn), what to learn, from whom, how (e.g. recognise 
success, correct errors, judge progress), and why. In humans 
and animals, both cognitive and affective factors play an 
important role in this process. By building this robot, we would 
further illuminate these factors.  

For instance, there is a need to model cognitive-affective 
mechanisms of attention [86] and saliency measures to allow 
the robot to determine the significance of stimuli or events, 
either on its own or when guided by a person (via gesture or 
directed gaze). When learning something new, it is also 
important for the robot to assign affective value to incoming 
stimuli to help bias what it learns — for example: Was the 
outcome good or bad, am I making progress toward a desired 
outcome, does my co-learner appear pleased?  Internal 
cognitive-affective mechanisms help assess the affective value 
of both internal and external states. For example, social 
referencing (where an infant looks to the expressive reaction of 
his or her caregiver) plays an important role in helping an 
infant (as it could for a robot) to affectively evaluate novel 
situations and to guide his/her subsequent exploration [87]. 
This will allow our system to learn quickly from natural social 
interaction, and allow us to explore cognitive-affective models 
of saliency and affective value with respect to learning in 
people and animals [88].  

The success of such a robot can be measured by its ability to 
engage the human’s natural interest and attention while 
learning a variety of new skills, tasks, and knowledge from 
natural human instruction, without requiring any adjustment 
of the internal learning mechanisms. We believe this will go a 

long way to enabling a new class of technological artefacts 
that readily adapt and learn within the human environment. 

5.2 A teachable interactive character
Next, imagine a scenario in which a child teaches a 3-D 
computer-animated puppy new tricks. Teachable agents are a 
new area of research [89, 90] and show promise not only in 
motivating learners, but also in engaging them in 
opportunities to reflect on attitudes about learning and other 
meta-learning concerns. Animal training can be viewed as a 
coupled system in which the trainer and the animal co-operate 
so as to guide the animal’s exploration to discover how to 
perform new skills. Animal trainers have developed techniques 
such as ‘luring’, ‘shaping’ and ‘clicker training’ that allow the 
person to guide the animal’s learning from its observed 
behaviour alone [91, 92]. Because the trainer cannot see 
inside the animal, it is very important that the virtual puppy’s 
behaviour be an immediate and accurate reflection of what it 
has learned so far. Moreover, to the extent it can infer, even 
minimally, the trainer’s intent, and use that knowledge to 
guide what it learns from the trainer, it will be markedly easier 
to train, and learn in far fewer examples. Blumberg and his 
colleagues [93, 94] have developed an autonomous animated 
dog that can be trained using these very techniques and 
embodying many of the characteristics that make dogs a 
tractable animal to train. This will provide the child with 
immediate and compelling feedback as to the success or 
failure of his or her teaching efforts.

One of the strong differences between animal learning and 
machine learning to date is the recognition that, in animals, 
important behaviours are often self-motivating, and are later 
repurposed for their ultimate use. Thus, a kitten perfects its 
pounce, not on its prey, but on its littermates, apparently 
because they are enjoyable to pounce on. Later, the 
motivational context dictates the object and form of the 

Fig 3 A co-learning system involving cognitive-affective mechanisms that regulate both internal and external processes.
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pounce — for pleasure, the pounce may aim for an object that 
is particularly ‘satisfying’ on which to pounce (and perhaps 
repeatedly so), whereas when hungry, the cat chooses the 
object and form of pounce that maximises the likelihood of 
satisfying hunger [95].  Indeed, Panksepp suggests that most 
so-called appetitive behaviours are self-rewarding and 
provides a sketch of the possible neural underpinnings of such 
a mechanism [96]. We would like to construct self-motivating 
behaviours in machines to illuminate how such mechanisms 
contribute to learning.

This new technology would also provide children with an 
opportunity to learn about the importance of motivation as 
well as context, timing, exploration, and built-in biases for 
efficient learning. By putting the child in the position of 
helping to guide the puppy’s learning, we hope to encourage 
the child to ask questions about his or her own learning, and 
consider how human learning and teaching may be similar but 
also different from animal training in interesting ways.

Such a system will have succeeded if the child gains a deeper 
understanding of the teaching-learning process and uses it to 
adapt his or her behaviour and hypotheses about learning and 
teaching. 

5.3 A learning companion
Finally imagine a scenario in which a machine serves as a 
computerised learning companion to facilitate a child’s own 
efforts at learning. A learning companion will not be an 
intelligent tutoring system that already knows the answers 
about the subject being learned, but rather a player on the 
side of the student — a collaborator of sorts — there to help 
the child learn, and in so doing, learn how to learn better. To 
do so, the companion will help to keep the child’s exploration 
going, by occasionally prompting with questions or feedback, 
and by watching and responding to aspects of the affective 
state of the child — watching especially for signs of frustration 
and boredom that may precede quitting, for signs of curiosity 
or interest that tend to indicate active exploration, and for 
signs of enjoyment and mastery, which might indicate a 
successful learning experience. It will have succeeded if 
students, especially those who encounter frustration and 
routinely handle it by quitting, learn instead how to persevere, 
increasing their ability and desire to engage in self-propelled 
learning.

A computerised learning companion allows for controlled 
explorations of communicative factors such as the role of facial 
expression, empathy, mirroring postures, and even emotional 
contagion, all of which can play a role in human-human 
interaction and relationship development [97, 98]. While most 
people cannot bring all these movements under precise 
control, a computational agent such as the learning 
companion can [99].  This is not to say that agent-synthesised 
movements can exactly replace those of people, nor that such 
theories developed in this environment will exactly map to the 
human-human environment; however, this level of control 
does allow for careful testing of hypotheses such as: ‘Can a 
computer companion’s displays of enthusiasm for a topic 
infect a student in a way similar to that in which a human 
companion’s displays of enthusiasm can?’

Going a bit further, it is known that the presence of someone 
who cares, or at least appears to care, can be motivating 
[100]. Various studies have linked interpersonal relationships 
between teachers and students to motivational outcomes over 
the long term [101—103]. Although computers do not ‘care’ 
in the sense of having feelings like people have, it is 
nonetheless possible for them to model certain behaviours and 
give some of the other impressions that contribute to a 
perception of caring, as has been recently demonstrated by a 
‘relational’ agent built to interact with people over a long 
period of time [104].  While that research was applied to 
health (exercise behaviour change), the findings that relate to 
caring and motivation may be similar to those that influence 
learning.  Although we do not expect that machine ‘caring’ 
could provide any kind of real substitute for genuine human 
caring, we do hypothesise that certain aspects of it could be 
given to learning tools and technologies in ways that have a 
positive impact upon learners. 

6. Fostering love of learning
There may seem to be a dramatic difference in the modernity 
of two major branches of our research on affective learning. 
While inanimate objects that react to affect (discussed above) 
were inconceivable until very recently, people have always 
created evocative objects that elicit delight, desire, or fear and 
these objects, whether their makers knew it or not, profoundly 
affected the way people learn. What is new to the digital age is 
the scientific understanding and the technology needed to 
continue this process in a deliberate theory-based manner.  
We present our strivings in this direction by exploring 
relationships between technology and learning on four levels 
each more complex than the previous and further away from 
the dominant paradigms. 

6.1 Level 1 — the holding power of the computer
It is widely recognised that computer technology can generate 
great intensity of engagement.  In many cases, the dominant 
effect comes from dramatic graphics and dynamic colourful 
animations with no intrinsic connection with the intellectual 
content.  More interesting cases make use of the capacity of 
the computer to provide a controllable level of challenge in 
facing problems that are connected with the content. 
Csikszentmihályi has highlighted the dynamic between 
‘challenge’ and ‘mastery’ in the learning process [17, 105]. 
Too often, educators try to make things ‘easy’ or 
‘entertaining’ for learners and seem to think that children 
need to be ‘motivated’ to do harder work.

A view of activities as motivating in themselves has been 
theorised by Csikszentmihályi who has found that people 
become most deeply engaged in activities that are 
challenging, but not overwhelming. Similarly, Papert has 
developed the concept of ‘hard fun’ — learners do not mind, 
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and benefit most from, activities that are ‘hard’ as long as 
they connect deeply with their interests and passions [106]. 

6.2 Level 2 — making it personal  
Less widely studied than intensity of engagement is quality of 
engagement. A long search for conditions that favour quality 
of engagement has led us to give special weight to the 
following four areas.

6.2.1 Constructionism — the engagement of the 
builder

The simplest description of ‘constructionist’ activities [106, 
107] emphasises a cognitive aspect — learners construct new 
knowledge most effectively when they are in the process of 
constructing something external which they can examine for 
themselves and discuss with others. But we also recognise 
affective aspects. Learners feel differently about the 
knowledge when they experience themselves as active 
participants with control over (and personal involvement in) 
the learning process.  And the way they feel about the 
knowledge profoundly influences what they will do with it and 
especially how they reflect on it, which in turn influences how 
it grows and connects. 

6.2.2 The physical and the digital
The constructionist principle can, of course, be effective when 
the constructs are virtual entities. But it has a special quality 
when the constructs combine the digital and the physical as in 
the case of the ‘programmable brick’ (developed in the Media 
Lab and commercialised as LEGO Mindstorms), which allows 
children to build (among other things) simple robots and 
endow them with behaviours. Here the physical nature of the 
construct allows the children to draw on their sophisticated 
skills and intuitions for sensing and manipulating the 
environments in which they live while the digital 
programmability allows them to turn these intuitions into 
formal knowledge. 

But this description in terms of ‘knowledge’ leaves out vital 
dimensions. The children’s emotional attachment to the 
objects they have known, their likes and dislikes, their 
aesthetic judgements all come into play. Pioneers in early 
childhood education, particularly Froebel and Montessori, 
attached importance not only to the conceptual but also the 
relational and aesthetic aspects of objects they designed for 
children.  Indeed, Frank Lloyd Wright credited his boyhood 
experiences with Froebel’s gifts (the manipulative materials 
developed for the first kindergarten in early 19th century) as 
the foundation of his architecture [108].  

Of course learning through attachment to objects can benefit 
learning science as well as art.  Even a superficial eye can see 
that learners are more engaged when they learn principles of 
physics and engineering by building functioning machines.  
Our research has shown that this engagement comes, in large 
part, from personal ‘identification’ with the robots and 
machines that they build. In our Beyond Black Boxes project, 
we found that students, by building their own robotic 
constructions made stronger (as well as clearer) connections 
with the scientific concepts underlying their investigations 
[109].

This is in line with findings by a growing number of researchers 
(e.g. Lave and Wenger [110]) who have argued that people 
form their strongest relationships with knowledge through 
concrete representations and activities — very different from 
the formal, abstract representations and approaches favoured 
in traditional school curricula (particularly in the domains of 
math and science). The physical-digital combination vastly 
expands the range of knowledge that can be experienced in 
this affect-supported fashion by a process that can be called 
‘making the abstract concrete’ [111].

6.2.3 Bodies of knowledge
When children program their LEGO Mindstorms constructs 
they draw on knowledge of many parts of the physical world.  
The affective force is greatest when this part of the physical 
world happens to be one’s own body. This observation 
suggests designing anthropomorphisable constructs, such as 
the Logo Turtle. 

The turtle exists in three forms — as a physical toy that moves 
on the floor, as a computational object that moves on the 
screen, and most abstractly as a mathematical entity that 
plays the role that a point plays in Euclid’s development of 
geometry [112—114].  With this new representation, children 
learn important geometric ideas in a more ‘body-syntonic’ 
way, imagining themselves as the turtle as it draws out 
geometric patterns, and thus leveraging their intuitions and 
experiences of their own bodies into more formal knowledge 
and into a more personal relationship with mathematics. 

Numerous other Media Lab projects over the years have 
contributed to expanding the range of ways in which the body 
can be ‘morphed’ into mathematics. Knot-tying, piano 
playing, juggling, skiing, and dance are example domains in 
which the body-in-motion can support intuitive, emotionally 
engaging learning about apparently unrelated but potentially 
deeply interconnected conceptual realms [115—122].   In 
summer 2003, Media Lab researchers worked with celebrated 
dancer/educator Jacques d’Amboise on organising a ‘RoBallet 
workshop’ [123—125] (Fig 4) to explore new directions 
opened by giving children direct bodily control over affect-rich 
features of the stage environment — lighting, sound and a 
projected stage set.  RoBallet can be appreciated for a 
cognitive side and for an affective side: the former about 
whether planning and thinking about one’s own movements 
through 3-D space can provide a foundation for thinking like a 
geometer; the latter about whether doing this in the 
emotionally intense context of dance gives the learning a 
special depth and robustness.

6.2.4 Music
Dance brings together two of the potentially richest 
intersections of the physical and the digital to support 
affectively powerful learning — movement and music. The 
latter is being richly pursued in its own right in the Toy 
Symphony Project [126] (see Fig 5) — the latest step in a 
tradition of using digital media to give children freer and more 
direct access to music as a means of creative expression.  
Everything that has been said about the other dimensions 
could be repeated here. Instead we mention a new source of 
insight from the study of musical activities that will surely 
eventually extend to the others. This is the beginnings of 
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breakthrough in finding the neurological basis of the 
relationship between affect and learning [127].  It is too soon 
to read clear conclusions from such studies. But like the brain 
studies on ‘being in love’ [128] they offer a glimpse into a 
possibility that the study of cross-modality learning such as 
music or dance with mathematics or language might be the 
route to understanding how the differences in affect are 
actually based in differences on neurological function. 

Fig 5 Hyperscore extract.

This area, together with those discussed in the three 
preceding sections, involves bringing the physical body into 
the learning experience.

Exploring how the role of the body interacts with cognition is a 
growing area of interest in psychology and cognitive science 
(e.g. Bausalon et al [129]), where new theories are being 
developed to explain many of the powerful intertwined 
influences of affective, cognitive and other bodily systems.

6.3 Level 3 — affective epistemology

6.3.1 Knowing how, knowing that, and getting to 
know you

On the previous levels we explored relationships between 
knowledge and action and between different bodies of 
knowledge. On this level we talk about giving knowledge new 
forms.  

We begin by noting that the learning we have just imagined 
does not fit into the clean separation between ‘knowledge’ 
and ‘affect’ that lies behind such statements as ‘l’affectivité 
constitue le ressort des actions ... et en règle l’energie. ’ 
(Affect is the spring of actions ... and governs their energy) 
[10]. Piaget’s statement calls up an image of a child motivated 
by the prospect of a reward (affect) to memorise the fact 
(propositional knowledge) that a circle is such and such or to 
learn how (procedural knowledge) to draw one.  Something 
different is happening here. The child is getting to know and 
perhaps to like the mediating technology as one might get to 
know and like a person. Papert makes much in his book 
Mindstorms of the fact that the kind of learning involved in 
getting to know a person is not reducible to propositional or 
procedural knowledge [113]. Nobody would question that 
getting to know a person engages affect in deep and essential 
ways. It is not about facts and skills. It is about relationship. 

The most important learning is not merely energised by affect; 
it is affective, and forms a relationship with the learner.  What 
the child internalises is less like what logicians study than like 
what psychoanalysts talk about as introjecting a person. The 
facts of geometry are not learned as such; the child has 
acquired the ability to re-generate them by internalising an 
entity with which he can identify enough to pilot through 
geometric manoeuvres by connecting to and drawing upon 
his/her own bodily knowledge.

Before turning to an example of what this kind of theorising 
can mean in practice we note that it points to a set of 
theoretical sources for educational thinking whose common 
characteristic is leading to a view of ‘the stuff’ of which mind is 
composed as being more like an active creature than like the 
propositions and links in passive data structures.  On the 
computational side it points to theories in the style of The  
Society of Mind [130] and the kind of thinking that lies behind 
object-oriented programming [131]. On the psychological side 
it points to psychoanalytic theory and most especially by its 
‘object-relations’ branch that gives a central role to the 
internalisation of ‘objects’ (including, in fact especially, people 
[132, 133].  In each case the ‘stuff of mind’ is not something 
like a proposition or a procedure but more like an active being.

6.3.2 Making mathematics that people will love to 
learn

The example mentioned above is a thread of research inspired 
by the slogan: ‘Instead of trying to make children love the 
math they hate, make a math they’ll love’ [112].  This 
programme1 raises two kinds of issue related to affect that are 
essentially different from those discussed earlier in this paper.  

Fig 4 A RoBallet workshop.

1 Mathematics here is a placeholder for all areas of study. We focus 
on one for the sake of concreteness.
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Firstly, a difference of time-scale — most of the earlier 
examples concern transitory emotional states such as being 
happy (or interested or bored) which can change in seconds, 
while here we are looking at what are sometimes called 
dispositions such as ‘being in love’ or ‘being interested in 
baseball’ which typically have far longer duration.  Secondly, a 
difference in purpose — in the earlier examples, our focus was 
on understanding or guiding a process of learning, whereas 
here we put a focus on what is learned, i.e. how can things-to-
learn be designed so as to elicit affect in ways that will 
facilitate learning.

In its scope our project is most like the ‘New Math’ of mid-
century which did try to use a learning theory to ‘make a new 
math.’  But instead of being discouraged by its failure, we 
offer an explanation that expresses in another way the central 
position of this paper. The learning theory used there was 
entirely cognitive — based on considerations of what was 
logically age-appropriate and ignoring all affective issues. It 
was about understanding not about loving. It failed not 
because the idea of changing the content of school 
mathematics is wrong; it failed because its changes went in 
exactly the wrong direction. Our successes in limited 
innovations suggest that the major weakness of traditional 
school math is being too dissociated from personal feelings 
and physical applications. The emphasis on logic in the design 
of the ‘New Math’ aggravated these weaknesses.  

The above observations point to the direction in which we are 
working. Others can be found in a special number of the 
International Journal of Computers for Mathematical Learning 
[134—136] and earlier publications by principals at the Media 
Lab [106, 113, 137]. An attempt at putting the whole 
together can be found in Papert’s paper ‘An Exploration in the 
Space of Mathematics Educations’ [138].

6.4 Level 4 — the social side of affective learning

6.4.1 Roots, fruits, and shoots
Learning is rooted in the person and the culture; it bears fruit 
through the construction process; it has shoots that branch 
into new areas, shaping and transforming the community 
around the learner. These principles of learning are 
experientially based, differing markedly from the concept that 
requires a disconnected accumulation of chunks of 
knowledge. In order for the learning to become truly rooted, a 
person has to have a deep emotional attachment to the 
subject area. Rooting and the possibilities for branching flow 
from a better understanding of emotion, motivation, 
attention, comfort, community, and culture.

Rogoff [139] describes the progression of community learning 
through the planes of apprenticeship, guided participation, 
and participatory appropriation. We have been building 
technological affordances that serve in the role of emotional 
and inspirational mentors and that foster the creative and 
idiosyncratic connections to learning that help community 
members to progress through these planes.

Digital technologies offer new opportunities for discovering 
roots, adapting to preferences, and enabling creative and 
idiosyncratic connections to learning and knowing. There is a 

need for a new range of expressive technologies and a more 
integrated methodology to facilitate rooted knowledge 
construction and support development of shoots to new areas 
through electronic collaboration and support [140]. 

An example is found in our work discovering engine culture in 
Thailand [141]. Numerous local innovations and widespread 
knowledge made it clear there was a deeply rooted culture of 
learning and practice building upon knowledge from the 
internal combustion engine. This became evident in our 
Project Lighthouse when rural adolescents, all of whom had 
left school after only a few years, used a variety of 
computational technologies to design a new dam and address 
critical water problems in the region. Not only was it 
remarkable that they learned enough to design an irrigation 
system without the usual years of formal preparation, but also 
through their local knowledge and ‘engine culture’ spirit they 
succeeded where the government had repeatedly failed. 

A second example is found in our longstanding efforts to 
immerse adults and children in the hard, but fruitful, work of 
inquiry and storytelling [142, 143], where we have seen 
communities forge around print and radio journalism, creating 
stories of interest and concern for themselves and their 
audiences.  This act of expression, facilitated by easy-to-use 
tools, led to an active debate over the content of their stories 
and, more importantly, the processes that they engage in as 
media producers. A collaborative editing process seems to 
help them develop a critical stance towards traditional media.  
As community participants challenge each other, they begin 
to understand the biases and critical thought processes that 
are the norm for professional journalists.

A third example flows from our work on new content enabled 
by computational media. We have engaged learners in 
developing computational models to improve life in their 
community [123].  We find that the content finds roots in a 
wider range of people and thus diminishes equity issues in 
accomplishment in mathematics and science across gender, 
class, and racial lines [125]. We have also found that these 
activities help root knowledge in these domains, make 
connections to tacit knowledge in the learner, and facilitate 
branching into new areas within these domains.

6.4.2 Wear learning 
‘We need to brand math, and all learning, so that each 
morning, when youth stand in front of the mirror deciding who 
they will be that day, they always decide to wear learning’ —
Christine Ortiz, youth leader of Florida’s ‘Truth’ campaign.

In 1998, a group of Florida teens was given authority and 
resources to launch a comprehensive campaign to change 
teen smoking behaviour. The teens established a network of 
grassroots, youth-led community organisations, and 
organised a mass-media outreach that included television 
commercials (both professional and, more effective, 
‘unpolished’ or homemade commercials), magazine 
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advertisements, billboards, and flyers. After the first year of 
what was branded the ‘Truth’ campaign, the programme had 
a 92% recognition rate, equal to mega-brands like Nike. In the 
first three years of the programme, smoking declined with 
unprecedented rates across the state. 

Affect about learning has a social component. The declining 
attitude pattern shown in Fig 6 is only partially due to how 
mathematics is presented in schools; it also reflects a dislike of 
mathematics that is deeply ingrained in contemporary 
cultures.  The study of affect and learning should include 
looking at how such cultural affect comes about and how it 
changes. 

Can a youth-led campaign, equipped with the right scientific 
findings about affective learning and the right technologies, 
help transform feelings about learning and about mathematics 
as the Truth campaign transformed feelings about smoking?  
Although it might be unrealistic to expect everyone to develop 
a deep love of mathematics, there is no reason why everyone 
could not love learning.  We would like to see the trend in 
these attitude graphs reversed.  We accept as an ultimate 
challenge for ‘Affective Learning’ the realising of ideas such as 
this. 
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